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We report the results of a comprehensive comparative study of the inviscid spatial 
stability of a parallel compressible mixing layer using various models for the mean 
flow. The models are (i) the hyperbolic tangent profile for the mean speed and the 
Crocco relation for the mean temperature, with the Chapman viscosity-temperature 
relation and a Prandtl number of one; (ii) the Lock profile for the mean speed and 
the Crocco relation for the mean temperature, with the Chapman viscosity- 
temperature relation and a Prandtl number of one; and (iii) the similarity solution 
for the coupled velocity and temperature equations using the Sutherland vis- 
cosity-temperature relation and arbitrary but constant Prandtl number. The 
purpose of this study was to  determine the sensitivity of the stability characteristics 
of the compressible mixing layer to the assumed thermodynamic properties of the 
fluid. It is shown that the qualitative features of the stability characteristics are 
quite similar for all models but that there are quantitative differences resulting from 
the difference in the thermodynamic models. In  particular, we show that the stability 
characteristics are sensitive to the value of the Prandtl number and to a particular 
value of the temperature ratio across the mixing layer. 

1. Introduction 
The study of the stability of compressible shear flows is somewhat more 

complicated than that of incompressible shear flows in that the thermodynamics of 
the compressible fluid is of major importance. As a consequence of compressibility 
the types of disturbances which can exist are quite varied: they can be subsonic, 
sonic, or supersonic modes and these can be either vorticity or acoustic modes (Mack 
1984, 1987, 1989); there can be multiple unstable modes with the same frequency; 
and finally three-dimensional modes are of great importance because they may be 
more unstable than two-dimensional modes ; the characteristics of these modes are 
dependent upon the thermodynamics chosen. 

The earliest calculations of stability characteristics of compressible boundary 
layers used realistic thermodynamic relations (Brown 1962 ; Lees & Reshotko 1962 ; 
Mack 1965) and this has continued to be the practice to  the present day. The 
situation with regard to  stability calculations for free shear layers is quite different. 
Most studies of the stability of compressible free shear flows have been based on 
assumed, somewhat arbitrary, mean velocity and temperature profiles which are not 
solutions to the mean flow equations but do satisfy the boundary conditions. If both 
the velocity and temperature profiles are arbitrary it might be conjectured that the 
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solutions of the stability problem could be unrelated to those of the physical 
problem. If they are, at least, rough approximations to  the actual solutions, one 
might conjecture that the solutions of the model stability problem would 
approximate those of the physical problem. These solutions of the model problems 
might be useful in elucidating qualitative features of the true stability problem 
because they are easier to treat. Some examples of studies of this type are that of Gill 
(1965), who studied the temporal stability of ' top hat '  jets and wakes; those of 
Blumen (1970), Blumen, Drazin & Billings (1975), and Drazin & Davey (1977) who 
examined the temporal stability of a compressible mixing layer with the mean 
velocity profile assumed to be given by a hyperbolic tangent and a constant 
temperature profile ; and Djordjevic & Redekopp (1988) who studied temporal 
stability with a hyperbolic tangent velocity profile and varying temperature. 

In  most compressible free shear stability studies the thermodynamics used was 
that of the model fluid (Stewartson 1964). This model was originally introduced in 
order to simplify the thermodynamics of the flow in compressible boundary layers. 
In  addition to obeying the perfect gas law (valid for real gases at temperatures less 
than a few thousand degrees K),  the model fluid has a unit Prandtl number so that 
the rates of diffusion of heat and momentum are equal, and the Chapman (1950) 
viscosity law with the viscosity proportional to the temperature is assumed to be 
valid. One class of approximate solutions involves modelling the mean velocity 
profile by a hyperbolic tangent and using the Crocco relation for the mean 
temperature profile. This approximation has been used by a number of authors, 
including Ragab & Wu (1988), Tam & Hu (1988, 1989), and Zhuang, Kubota & 
Dimotakis (1988). We have also used this model in a comprehensive study of the 
spatial stability of an unbounded compressible mixing layer (Jackson & Grosch 
1989; hereinafter referred to  as Part i ) ,  a bounded compressible mixing layer 
(Jackson & Grosch 1990a) as well as in a similar study of a reacting compressible 
mixing layer (Jackson & Grosch 1990b). 

Another class of models can be defined as those which use the Lock profile (Lock 
1951), the similarity solution for the velocity profile with the viscosity proportional 
to the temperature, a Prandtl number of one and various temperature profiles. 
Lessen, Fox & Zien (1965, 1966) in temporal stability calculations used the Lock 
profile and assumed that the flow was iso-energetic so that the temperature of the 
stationary gas was much greater than that of the moving gas even a t  moderately 
supersonic speeds. Gropengiesser ( 1969) used a generalized hyperbolic tangent profile 
(see his equation (2.27)) to  approximate the Lock profile and used the Crocco relation 
for the temperature in spatial stability calculations. 

The final class of solutions to the mean flow equations are those where the Prandtl 
number is not necessarily one and a reasonably realistic viscosity-temperature 
relation, such as the Sutherland law. is used. The velocity and temperature profiles 
are exact similarity solutions of the mean flow equations. Quite surprisingly, there 
are few linear stability calculations for compressible mixing layers with these more 
realistic mean velocity and temperature profiles. The only published results, of which 
we know, are those of Ragab & Wu (1988) for spatial stability and those of Macaraeg, 
Streett & Hussaini (1988) for temporal stability. It seems that the main interest of 
Ragab & Wu was to determine the dependence of the maximum growth rate of the 
disturbances on the velocity ratio of the mixing layer for subsonic flows. They 
concluded that the maximum growth rate depends on the velocity ratio in a complex 
way. Macaraeg et al. studied the temporal stability of a compressible mixing layer for 
a few selected values of the Mach number ( Q  4), and a few values of the free-stream 
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temperature ratio. They were the first to point out the sensitivity of the stability 
characteristics of this class of flows to  variations in the Prandtl number. 

Very recently there has been a revival of interest in the stability of compressible 
free shear layers, particularly at supersonic speeds. An unanswered question is the 
accuracy of the results of those calculations in which various models of the mean flow 
thermodynamics have been used. It is clear that there will be quantitative differences 
in, for example, phase speeds and growth rates of the disturbances depending on the 
model of the mean flow. The important questions are first, the extent to which 
qualitative predictions of recent, and older, studies are dependent on the models of 
the mean velocity and temperature used, and second, the magnitude of the 
differences in the quantitative predictions as a function of the mean flow model. 

In  order to answer these questions we undertook a comprehensive systematic 
study of the stability of one free shear flow, the compressible mixing layer. In  this 
study we calculated the stability characteristics of the compressible mixing layer 
using a number of representative models of the mean velocity and temperature 
profiles over a wide range of Mach numbers. The models are (i) the hyperbolic 
tangent profile for the mean speed and the Crocco relation for the mean temperature, 
with the Chapman viscosity-temperature relation and a Prandtl number of one ; (ii) 
the Lock profile for the mean speed and the Crocco relation for the mean 
temperature, with the Chapman viscosity-temperature relation and a Prandtl 
number of one; and (iii) the ‘similarity solution for the coupled velocity and 
temperature equations using the Sutherland viscosity temperature relation and 
arbitrary but constant Prandtl number. I n  $2 we formulate the problem, including 
defining the thermodynamic models. Our results are presented in $3. Finally, we 
summarize our conclusions in $4. 

2. Formulation of the problem 
2.1. The mean flow 

The problem considered here is the inviscid spatial stability of the steady two- 
dimensional flow of a compressible mixing layer which lies between two streams with 
different speeds and temperatures. We take one of the streams to  be moving at + co 
and the other to be stationary at - co . The equations are non-dimensionalized by the 
values of the density, temperature, and speed in the moving stream. The lengthscale 
is a characteristic length of the mean flow, and the timescale is the ratio of the length 
and speed scales. The x-axis is along the direction of flow, the y-axis is normal to the 
flow direction, and the z-axis is in the cross-stream direction. U and V are the velocity 
components in the x and y directions, respectively, p is the density, and T the 
temperature. We assume that the equations governing the mean flow are the 
compressible boundary-layer equations (Stewartson 1964). The equations for the 
mean flow quantities U =f’(r) and T are given by 

where the primes indicates differentiation with respect to  the similarity variable 17, 
and the Howarth-Dorodnitzyn transformation has been used. Here ,u is the viscosity 
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coefficient, Pr is the Prandtl number, y is the ratio of specific hcats of the gas, and 
M the Mach number of the moving stream. The appropriate boundary conditions are 

f ’ ( + ~ ) =  1 ,  T ( + w ) =  1 ,  f ’ ( - ~ 0 ) = 0 ,  T ( - c o ) = ~ , ,  (2.3) 

with PT the ratio of the temperature in the stationary gas to that of the moving gas. 
If PT is less than one, the stationary stream is relatively cold compared to the moving 
stream, and if PT is greater than one it is rclatively hot. 

It should be noted that (2.1)-(2.3) constitute a fifth-order boundary-value 
problem, but that there are only four boundary conditions. Ting (1959) has shown 
that an appropriate boundary condition can be obtained by matching the free- 
stream pressures on either side of the mixing layer if a t  least one of the steams is 
supersonic. However, Klemp & Acrivos (1972) have shown that this condition is 
incomplete if both streams are subsonic. These conditions are equivalent to a 
specification of f (  - a). This value, a specification of the stream function, can be 
varied so as to ensure thatf(0) takes on any particular value. This will not effect the 
physics of the flow, only the location of the origin of the coordinate system. 

The structurc of the mean flow clearly depends on the variation of p and Pr with 
temperature and pressure. In general, both p and Pr are very weakly dependent on 
pressure and can be taken to  be independent of pressure. The Prandtl number is 
somewhat dependent on the temperature but, for this study, will be assumed to be 
constant, with calculations being carried out over a range of€% between 0.7 and 1.0. 
Finally, the dependence of viscosity on temperature is quite important and the 
choice of that dependence leads to several thermodynamic models discussed in thc 
following section. 

2.2. Flow models 

Given a value of Pr and p( T) the mean flow is determined by the solution to (2.1) and 
(2.2) with the boundary conditions (2.3) and a specification off(0). We will consider 
three models for the mean flow. 

If it is assumed that the viscosity is proportional to the temperature, that is we use 
the Chapman viscosity law, (2.1) is uncoupled from (2.2). With Pr = 1 ,  (2.2) can be 
solved in closed form to give the Crocco relation, which with the boundary conditions 
(2.3), is given by 

T = 1 - ( 1  - P,) (1 - U )  + - 1)M2U( 1 - U).  (2.4) 

The first model of the mean flow involves using (2.4) for the mean temperature 
profile and approximating the mean velocity profile by a hyperbolic tangent 

U = $( 1 + tanh (7)). (2 .5)  

We will call this approximation the Tanh model. The results for this model were 
presented in Part 1. Some of these results will be reproduced here for ease of reference 
and comparison purposes. The second model of the mean flow again uses (2.4) for the 
mean temperature profile, and the solution to (2.1) with p proportional to T and 
Pr = 1, for the mean velocity profile. We will call this the Lock model. The third 
model is one in which the Prandtl number is constant but not necessarily one and a 
reasonably realistic viscosity-temperature relation is used. For temperatures greater 
than about 100 K, a Sutherland type of relation 

p = a@/(b+T),  a = l + b ,  6 = 110.4K0/T*, (2.6) 

with T* the reference temperature, is reasonably accurate. The mean velocity and 
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temperature profiles are the solutions of (2.1)-(2.3) and ,!A given by (2.6). We will call 
this the Sutherland model. Typical velocity and temperature profiles are shown in 
figure 1 for PT = t ,  Mach 2,  and two values of the Prandtl number. The shapes of 
these profiles are quite similar, but as will be shown below these small differences can 
have substantial effects on the stability properties. 

2.3. The stability problem 

The stability problem can be formulated independently of the detailed form of the 
U and T profiles. The flow field is perturbed by introducing two-dimensional wave 
disturbances in the velocity, pressure, temperature and density with amplitudes 
which are functions of r ] .  It is straightforward to  derive a single equation governing 
the amplitude of the pressure perturbation 17, given by 

l7”-Kl7’- U-C a2T[T-M2(U-  c ) ~ ]  17 = 0, (2.7) 

where c is the complex phase speed 
w 

c = -  
a’ 

and primes indicate differentiation with respect to  the similarity variable r ] .  The 
stability problem is thus to  solve (2.7) for a given real frequency w and Mach number 
M .  The eigenvalue is the complex wavenumber a. The real part of a is the 
wavenumber in the x-direction, while the imaginary part of a indicates whether the 
disturbance is amplified, neutral, or damped depending on whether a, is negative, 
zero, or positive. If ai is zero, c = cN is the phase speed of a neutral mode. 

The boundary conditions for l7 are obtained by considering the limiting form of 
(2.7) as q + f  00. The solutions to (2.7) are of the form 

n + e x p  (fQ,r]), (2.9) 

52; = a2[l -W(l - c ) ~ ] ,  522 = a2/3T[PT -M2c2]. (2.10) 
where 

We define c, - to  be the values of the phase speed for which 52: vanishes. Thus, 

(2.11) 

Note that c+ is the phase speed of a sonic disturbance in the moving stream and c- 
is the phase speed of a sonic disturbance in the stationary stream. At 

M = M ,  1+(/3,):, (2.12) 

c, are equal, and this value is denoted 6. 
A more detailed discussion of the stability problem can be found in Part 1. We only 

note here that the classification scheme in regards to figure 1 of Part 1 will also be 
used here to classify the instabilities. 

Since (2.7) has a singularity at U = cN, we integrate it along the complex contour 
(-T,L, - 1 )  to (0, - 1) and (?I+, - 1) to (0, - 1 )  using a variable step Runge-Kutta 
scheme. I n  our calculations we have taken r ] ,  to be 6 for the Tanh and Lock models. 
However, we found that 7- needs to be larger for the Sutherland model because the 
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FIQURE 1. Plot of the  (a )  velocity and ( b )  temperature vs. 7 for p, = i, Mach 2, and thermodynamic 
models ( I )  Tanh, (2) Lock, (3) Sutherland with Pr = 1.0, and (4) Sutherland with Pr = 0.7. 

decay a t  -a is slower than for the other two models, with the rate of decay 
decreasing as /IT is decreased (Mack 1989). We choose an initial value of a and 
compute the boundary conditions as in Part 1. We then iterate on the wavenumber 
a, using Muller's method, until the boundary conditions are satisfied and the jump 
in the solution a t  (0, -1)  is less than lo+. All calculations were done in 64 bit 
precision. Various numerical tests showed that the eigenvalues are correct to a t  least 
one part in lo5. 

3. Results 
In  this section we present results for the regularity condition, phase speeds, and 

growth rates of the stability problem. In all of our calculations we have taken y = 
1.4 and 0 < M < 7. We have also taken the reference temperature T* to be 1500K. 
Stability calculations for values of T* of 500 K and 1000 K were done and it was 
found that there was a t  most only a 2 %  change in the eigenvalues. Thus, we 
conclude that the actual value of the reference temperature T* is not the important 
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parameter, rather it is the ratio, PT, of the temperatures in the stationary stream to 
that of the moving stream which is the important parameter. 

3.1. The regularity condition 

The Lees & Lin (1946) regularity funct,ion is defined by 

Let qc be a root of S(r ) ,  and define c" = U(vc ) .  If c" lies in region 1 of the c,-M diagram 
(see figure 1,  Part  l),  then Lees & Lin (1946) have shown that, provided a + 0, 
c" = cN is the phase speed of a true neutral mode. This condition is a generalization of 
the Rayleigh condition for incompressible shear flow (Drazin & Reid 1984). The 
corresponding neutral wavenumber and frequency must be determined numerically. 
These modes are called subsonic neutral modes. If E lies in regions 2, 3 or 4 of the 
c,-M diagram, then Edoes not correspond to the phase speed of a true neutral mode. 
The phase speeds in these regions must be found numerically. 

We have shown analytically in Part 1, for the Tanh model, that S is a cubic in tanh 
(7) and therefore has either one or three real roots. These roots depend on the Mach 
number, PT, and y. There is one real root for M < Mo and three real roots for 
M 2 M,,  where M ,  is a function of PT and y ,  and is given by (3.6) of Part  1. For 
/IT = 1,  there is a single real root with phase speed of a (denoted by c") and is indepen- 
dent of Mach number. If PT > 1 the value of c" for the single root is a monotonically 
increasing function of the Mach number, with a value always greater than 6. On the 
other hand, if PT < 1, the value of 6 for the single root is a monotonically decreasing 
function of the Mach number, with a value always less tha9 c". Thus PT = 1 is a 
transition value. This unique value of PT, which we denote by PT, plays a critical role 
in the behaviour of the solutions of the stability problem, as will be shown below. The 
corresponding value of the root which appears a t  Mach zero has been denoted by c". 

We have not been able to demonstrate the above properties analytically for the 
Lock and Sutherland models, b$t have been able to do so numerically. For the Lock 
model the transition value is PT = 0.57753, with c" = 0.4318. For the Sutherland 
model with Pr = 1 the transition value is PT x 0.445 with c" x 0.392, while for Pr = 
0.7 the transition value is PT x 0.164 with c" x 0.252. Since the mean profiles of 
velocity and temperature are coupled through the viscosity for the Sutherland 
model, the exact tlransition value was difficult to determine numerically. It is clear 
that the value of PT is strongly dependent on the value of the Prandtl number. The 
depeqdence on Pr is shown very clearly in the results presented in figure 2 where we 
plot PT and c" for the Sutherland model as a function of the Prandtl numb2r. Note 
that as the Prandtl number is decreased from one, the transition values of PT and 6 
also decrease. 

For all three thermodynamic models the three real roots of S always lie in regions 
2,3,  or 4 for two-dimensional modes. Therefore, for a two-dimensional mode, only the 
single root which lies in region 1 is the phase speed of a true neutral mode. However, 
the sonic speeds c ,  are functions of the angle of propagation of the waves (see (2.20), 
Part l) ,  and as the angle is increased, the sonic curves shift towards higher Mach 
numbers thus increasing the extent of region 1. It is therefore clear that there will be 
some angle of propagation for which all three zeros of S lie in region 1. For this angle 
and all greater angles less than go", all three zeros of S yield the phase speed of true 
neutral subsonic modes. 
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FIGIJRE 2. Plot of 0, a, and 0 ,  6 us. Prandt,l number for the Sutherland model. 

3.2. Neutral modes 
In  this section we present the phase speeds, frequencies, and wavenumbers of the 
neutral modes for the three models with PT of 2.0, 1.0, and 0.5 and Pr = 0.7 for the 
Sutherland model. 

We have shown in the previous section that if c“ lies in region 1, then it corresponds 
to the phase speed of a true subsonic n y t r a l  mode, denoted by cN. For any of the 
three thermodynamic models, if PT = PT, the phase speed of the ncutral mode is 
independent of Mach number in region 1. This is true for Mach numbers up to M,, 
where the mode splits into? pair of supersonic neutral modes, one in region 2 and the 
other in region 4. If PT > PT, the phase speed of the subsonic neutral mode increases 
with Mach number up to M,, the Mach number a t  which the phase speed equals that 
of the sonic wave. Beyond M,  the subsonic neutral mode of region 1 is transformed 
into a fast supersonic neutral mode in regioq 2. In addition, a t  M ,  a slow supersonic 
neutral mode appears in region 4. If PT < P T ,  then the opposite behaviour occurs. 

Figure 3 shows plots of the phase speeds of the neutral modes as a function of Mach 
number for PT = 2 obtained by using the Tanh, Lock, and Sutherland models. The 
results for all three models show qualitatively similar behaviour and small 
quantitative differences. 1t”should be noted that PT of 2.0 is considerably larger than 
the transition value of PT for all three models. There are some quantitative 
differences between the results using the different models. For example, in region 1, 
the neutral mode of the Tanh model has the lowest phase speed and that of the Lock 
model the highest with the phase speed of the Sutherland model in between. 
However, there is only about a 10% maximum difference in the phase speeds. The 
same ordering with respect to magnitude of the phase speed is also true for the fast 
supersonic neutral mode in region 2. The phase speeds of the slow supersonic neutral 
modes in region 4 are very nearly the same for all of the models over the range of 
Mach numbers shown. The wavenumbers and frequencies of the neutral modes show 
very similar behaviour with Mach number for all the models. 

Similar results are shown in figure 4 for PT = 1.0. One can see a marked difference 
between the results for the Tanh model and the others. This is due to the fact that aT = 1 is the transition value for the Tanh model. Thus the phase speed of the 
subsonic neutral mode of the Tanh model is constant up to M ,  = M ,  where the mode 
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FIGURE 3. Plots of two-dimensional neutral phase speeds for pT = 2.0 va. Mach number: -, 
phase and ---, sonic speeds; subsonic modes: (1)  Tanh, (2) Lock, (3) Sutherland; fast modes: (4) 
Tanh, (5) Lock, (6) Sutherland; slow modes: (7) Tanh, (8) Lock, (9) Sutherland. 
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FIGURE 4. Plots of two-dimensional neutral phase speeds for PT = 1.0 us. Mach number: -, 
phase and ---, sonic speeds; subsonic modes: (1) Tanh, (2) Lock, (3) Sutherland; fast modes: (4) 
Tanh, ( 5 )  Lock, (6) Sutherland; slow modes: ( 7 )  Tanh, (8) Lock, (9) Sutherland. 

then splits into fast and slow supersonic neutral modes. The phase speeds of the 
subsonic neutral modes for the Lock and Sutherland models increase slightly as M 
increases up to M,. At M, the modes of the Lock and Sutherland models are 
transformed from subsonic to fast supersonic neutral modes. 

Finally, figure 5 shows the variation of the phase speed of the neutral wave with 
Mach number for PT = 0.5. This value of PT is less than the transition value for the 
Tanh ( =  1.0) and the Lock ( x  0.57753) models but substantially greater than the 
transition value of the Sutherland model (x 0.164). Because of this, the results from 
the Tanh and Lock models are similar and both differ from those of the Sutherland 
model. Because the PT of 0.5 is smaller than the transition values for the Tanh and 
Lock models the subsonic neutral modes of these models are transformed into slow 
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FIGURE 5.  Plots of two-dimensional neutral phase speeds for p, = 0.5 z's. Mach number: -, phase 
and ---, sonic speeds; subsonic modes: (1) Tanh, (2) Lock, (3) Sutherland; fast modes: (4) Tanh. 
( 5 )  Lock, (6) Sutherland; slow modes: (7)  Tanh, (8) Lock, (9) Sutherland. 

supersonic neutral modes a t  M ,  and fast supersonic neutral modes appear a t  M,. 
Conversely, the subsonic neutral mode for the Sutherland model is transformed to a 
fast supersonic neutral mode a t  M,, while a slow supersonic neutral mode appears at 
M,. In  regions 2 and 4 it can be seen that the phase speeds of the fast and slow 
supersonic neutral modes are quite similar for all models. 

3.3. Growth rates 

The maximum growth rates of the unstable modes are presented in this section and 
compared as a function of Mach number and PT for the three models. In addition the 
variation of the growth rate with frequency for PT = 2.0 is presented at  selected 
values of the Mach number. It should be noted that the phase speeds of the unstable 
modes lie in the vicinity of the phase speed of the neutral mode in region 1 and 
between the phase speeds of the neutral modes and the corresponding sonic curves 
in regions 2 and 4. Thus we see that a t  any given Mach number there is only a small 
band of phase speeds of the unstable modes. 

Figure 6 shows the maximum growth rates versus Mach number for PT = 2.0. The 
general variation is similar for all of the models. The maximum growth rate is largest 
a t  Mach zero and decreases by a factor of 5 to 10 as the Mach number increases from 
zero to M ,  and approaches a limiting value as the Mach number is further increased. 
At low Mach numbers the maximum growth rates for the Tanh model are the largest, 
followed in magnitude by those of the Sutherland and Lock models. At Mach 
numbers greater than M ,  the Lock model has the largest growth rates of the fast 
supersonic modes while those of the Tanh and Sutherland models are roughly equal. 
The second group of unstable modes, the slow supersonic modes, appear a t  M , .  The 
growth rate of the most unstable of these modes first increases over a small range of 
Mach numbers and then levels off. At this value of PT the maximum growth rates of 
these slow supersonic modes are about equal. I n  all cases, the maximum growth rate 
approaches a limiting value in this range of Mach numbers. 

Similar results for PT = 1.0 are shown in figure 7. In  region 1 the growth rates 
obtained from the Tanh model are significantly larger than those of the other models. 
The maximum growth rates of these later two models are virtually identical in this 
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FIGURE 6. Plot of maximum growth rates of the two-dimensional modes wu9. Mach number for 
/3, = 2.0; subsonic modes: (1) Tanh, (2) Lock, (3) Sutherland; fast modes: (4) Tanh, (5) Lock, 
(6) Sutherland; slow modes: (7) Tanh, (8) Lock, (9) Sutherland. 
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FIGURE 7. Plot of maximum growth rates of the two-dimension modes ws. Mach number for 
/3, = 1.0; subsonic modes: (1) Tanh, (2) Lock, (3) Sutherland; fast modes: (4) Tanh, (5) Lock, 
(6) Sutherland; slow modes: (7) Tanh, (8) Lock, (9) Sutherland. 

region. Because this value of PT corresponds to the transition value for the Tanh 
model, we see that the maximum growth rate of the subsonic mode and its slow 
supersonic continuation first decreases as the Mach number approaches M,,  levels off 
and then begins to increase with increasing Mach number. Because the transition 
values for the other two models are less than one, their behaviour is the same as in 
the previous case; the maximum growth rate decreases as the Mach number 
approaches M ,  and then levels off for higher Mach numbers. Finally as in the 
previous case, the second group of unstable modes, those which appear a t  M,,  have 
maximum growth rates which are approximately equal and have similar behaviour. 

The maximum growth rates for PT = 0.5 are plotted versus the Mach number in 
figure 8. Note the change in scale of the maximum growth rate as /IT is decreased. It 
is important to realize that /IT = 0.5 is less than the transition value for both the 



170 T .  L .  Jackson and C .  E .  Grosch 

0 I 

M 

FIGURE 8. Plot of maximum growth rates of the two-dimensional modes us. Mach number for 
p, = 0.5; subsonic modes: (1) Tanh, (2) Lock, (3) Sutherland; fast modes: (4) Tanh, ( 5 )  Lock. 
(6) Sutherland; slow modes: (7) Tanh, (8) Lock, (9) Gutherland. 

Tanh and Lock models but greater than that for the Sutherland model. Thus for the 
Tanh and Lock models the maximum growth rate decreases up to M,, levels off and 
then increases with increasing Mach number. However, for the Sutherland model the 
behaviour is different because this value of PT is larger than its transition value. 
Therefore, the variation with Mach number is the same as in the previous two cases. 
However, if the stationary gas were to  be sufficiently cooled, we would expect that 
the maximum growth rate of the Sutherland model would behave in the same 
manner as the other two models a t  higher Mach numbers. Finally, as in the previous 
two cases, the second group of unstable modes have maximum growth rates which 
are approximately equal and have similar behaviour in this range of Mach numbers. 

From the results given above, it is seen that the general variation of the maximum 
growth rate with Mach number depend: on whether PT is greater or less than its 
corresponding transition value. If PT > PT, the growth rates of the unstable subsonic 
modes and their fast supersonic continuation first decrease as the Mach number is 
increased up to M,, and then begin to level off. The growth rates of the slow 
supersonic modes which appear a t  M , ,  first increase slightly, level off, and eventually 
increase with Mach number. If PT < PT, the growth rates of the unstable subsonic 
modes and their slow supersonic continuation first decrease as the Mach number is 
increased up to M,,  level off, and then begin to increase with Mach number. The 
growth rates of the fast supersonic modes, which appear a t  M,,  first increase slightly 
then level off. We note that the maximum growth rates of the slow modes do not 
increase without bound as the Mach number is increased. Balsa & Goldstein (1990) 
have shown, for the Tanh model, that  the growth rates decrease as 1/M for large 
enough Mach number. Thus the increase of the growth rates shown in the above 
figures will eventually level off and begin to decrease. In  addition, the very high 
temperatures associated with large Mach numbers may invalidate these thermo- 
dynamic models because of the increasing importance of real gas effects. 

Further insight into how the choice of thermodynamic model effects the growth 
rate of the unstable modes is provided by the results shown in figures 9 and 10. In 
these figures we show the variation of the growth rate of both the fast and slow 
unstable supersonic modes for PT = 2.0 and M = 2.5 (figure 9) and M = 5.0 (figure 10) 
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FIGURE 9. Plot of growth rates -a, of the fast and slow two-dimensional modes vs. frequency for 
PT = 2 and M = 2.5; fast modes: (1 )  Tanh, (2) Lock, (3) Sutherland; slow modes: (4) Tanh, (5) 
Lock, (6) Sutherland. 
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FIGURE 10. Plot of growth rates -a, of the fast and slow two-dimensional modes vs. frequency 
PT = 2 and M = 5.0; fast modes: (1 )  Tanh, (2) Lock, (3) Sutherland; slow modes: (4) Tanh, 
Lock, (6) Sutherland. 
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with the frequency of the disturbance. The results at Mach 2.5 show that the slow 
unstable supersonic modes exist in a very narrow range of frequencies compared to 
that of the unstable fast supersonic modes. The shape of the growth rate ( - ai) versus 
frequency ( w )  curves for the slow modes is similar for all of the models. 

We found that the widest range of frequencies of the unstable slow supersonic 
modes and the maximum growth rates are those of the Tanh model, followed by 
those of the Sutherland model and then the Lock model. These results are somewhat 
different for the unstable fast supersonic modes, for which the Lock model has the 
largest maximum growth rates and the widest range of unstable frequencies. In  
terms of the maximum growth rates and range of unstable frequencies the 
Sutherland model is the next largest, followed by the Tanh model. Similar results for 
Mach 5 are shown in figure 10. Note the change in scales between these two figures. 
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FIGURE 1 1 .  Plot of maximum growth rates versus /3, for Mach numbers ( 1 )  1.5, (2) 2.0, (3) 3.0 for 
0, subsonic; 0, fast supersonic, and 0 ,  slow supersonic modes; (a) Tanh, (b) Lock, (c) Sutherland. 

All of the features shown in the previous figure appear in this figure. The only 
exception is for the slow supersonic modes in which now the Lock model has a 
slightly larger growth rate than the Sutherland model. One striking feature of these 
results is the decrease in the range of frequencies of the slow mode. 

The change in the overall maximum growth rate as a function of /IT at fixed Mach 
number is rather complex. This is due to the fact that  for Mach numbers greater than 
M ,  thcrc arc now two unstable modes, one in region 2 and another in region 4. An 
increase in /IT can result in a change in type of the most unstable mode. Some results 
bearing on this are shown in figure 11.  Here we have plotted the maximum growth 
rate as a function of PT for selected values of the Mach number for the three models. 
For example, at Mach 2 the most unstable mode for the Tanh model is a slow 
supersonic mode for values of PT up to 1.25 while it is a subsonic mode for PT 2 1.50. 
For the Lock model, again at Mach 2,  the most unstable mode is a slow supersonic 
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one up to PT = 0.75, a fast supersonic mode at  PT = 1.0, and subsonic modes a t  
values of PT greater than or equal to 1.25. Finally, the Sutherland model a t  the same 
Mach number has, as its most unstable mode, a slow supersonic one a t  PT = 0.5, a 
fast supersonic one at 0.75, and subsonic modes for PT greater than or equal to 1.0. 
This change in mode type is related to the increase in M ,  with increasing PT 
independently of the thermodynamic model (see (2.12)). Thus as PT is increased the 
extent of region 1 of the c,-M diagram increases so that unstable modes a t  fixed M 
can undergo a change from supersonic to  subsonic. 

4. Conclusions 
The characteristic features of the solutions to the stability problem for the 

compressible mixing layer are qualitatively similar for all of the thermodynamic 
models used in this study. However, there are quantitative differences between the 
results obtained from the different models. These range from about 10 % in the phase 
speeds to, in the most extreme case, about 50% difference in the maximum growth 
rates. 

Despite these quantitative differences there is an underlying similarity in the 
qualitative behaviour of the solutions to the stability problem. For all three 
thermodynamic models the regularity condition yields a cubic in Mach number a t  
fixed PT. The behaviour of the solutions to  the stabiljty problem depends on yhether 
PT is larger or smaller than the transition value PT. If PT is larger than PT the 
subsonic modes are transformed into fast. supersonic modes a t  the Mach number at  
which their phase speed equals that pf the sonic wave in the stationary stream. On 
the other hand, if PT is smaller than PT the subsonic modes are transformed into slow 
supersonic mod5s when their phase speed equals the sonic speed of the moving 
stream. If PT = PT, then the phase speeds of the subsonic neutral modes are constant. 
This mode splits into a pair of fast and slow supersonic modes at M,.  For any value 
of PT there is a single band of unstable subsonic modes in region 1, but there are two 
bands of unstable supersonic modes, one in region 2 and one in region 4. For all of 
the thermodynamic models, the second band of unstable supersonic modes appears 
when thc Mach number equals M,. These secoqd modes are slow supersonic modes 
if PT > PT and fast supersonic modes if PT < PT. Both the fast and slow unstable 
supersonic modes have a rather small varia$ion in the phase speed about the mean 
value. Finally, we note that the value of PT is a sensitive function of the Prandtl 
number for the Sutherland model. 

We have found that, independent of the thermodynamic model, the maximum 
growth rates of the unstable modes decrease by a factor of 5 to 10 as the Mach 
number is increased from zero to M,. As the Mach number is increased beyond M ,  
the maximum growth rates of the fast supersonic modes approach a limiting value. 
On the other hand, the maximum growth rates of the slow supersonic modes first 
level off for M > M ,  and then begin to increase with a further increase in the Mach 
number. 

In view of the results presented here we conclude that all of the thermodynamic 
models yield qualitatively similar results. In  view of this, all previous work based on 
simplified thermodynamic models yields qualitatively correct results. Because of the 
analytical simplicity of the Tanh model and because it appears to be a reasonable 
approximation to the mean velocity and temperature profiles we suggest that  it is 
appropriate for use in non-parallel and nonlinear models of the stability of the 
compressible mixing layer. 
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